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Density-functional theory of the water liquid-vapour 
interface: II 

B Yang, D E Sullivan and C G Gray 
Guelph-Waterloo Pro- for Graduate Work in Physics. Wulversity of Guelph, Guelph. 
Ontario, Canada N I 0  2WI 

Received 5 January 1994. i n  final form 18 March 1994 

Abstrad An improvement of our previous efiended mean-field theory of the liquid-vapour 
interface of water is described. This revision extends the range of validity of the theory to room 
temperature. The current theory is improved in lhree aspects ( I )  the effective angle-averaged 
pair potential is obtained by the RAM (referenceweraged Mayer) function approximation. 
avoiding expansion in inverse powers of lemperatw; (2) the son repulsive care of the  PAP water 
model pair potential is treated accurately; and (3) the anisotropic interactions are represented 
by a higher-order (1 = 5 )  multipole expansion. The current theory includes DO adjustable 
parametw, the critical tempenture T, is found to he 609 K. Detailed calcul3*ions are given for 
room temperature. where molecular-dynamics simulation results are available for comparison. 
A more detailed representalion of the orientational distribution function is repaned. 

1. Introduction 

In recent years, density-functional methods have been widely applied, with significant 
success, to the study of classical inhomogeneous fluids [I] .  Most of these applications 
have been to models of simple, i.e., monatomic fluids. Progress in the development of 
density-functional theories for molecular fluids has been slower, as is understandable due 
to the increased complexity of such systems. Nonetheless, there have been several works 
on this subject, with application to bulk phase transitions and interfacial properties of liquid 
crystals [2-4], amphiphile solutions [5 ] ,  Langmuir monolayers [6] ,  polar liquids [7-111, and 
other molecular fluids [12,13]. 

The present article involves re-examining density-functional theory for the specific case 
of the liquid-vapour interface of water. The theory described here should also be applicable 
to other fluids composed of strongly polar molecules, albeit ones restricted to exhibiting 
weak anisotropy of the repulsive molecular cores. Here we are concerned with revising 
an earlier theory of ours [8], which in turn was motivated by a theory of the liquid- 
vapour interface of polar fluids proposed by Teixeira and Telo da Gama [7]. Underlying 
these earlier theories was an expansion of the grand canonical potential in powers of the 
anisotropic (multipolar) part of the intermolecular pair potential. This effectively amounts to 
a high-temperature perturbation expansion. When applied to a model pair potential (namely 
TlP4P [14, IS]) characterizing water, the theory was found [SI to produce an unstable bulk 
liquid phase at temperatures below about 400 K, clearly a consequence of the underlying 
perturbation expansion. In this paper we examine a revised theory closely related to that of 
[7,8] but avoiding the expansion in powers of the potential. For the same model of water 
as before, the present theory yields stable solutions over the whole physical temperature 
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range of liquid water. The approach used here may be termed an amalgam of mean-field 
theory with a generalized version (i.e., applicable to inhomogeneous fluids) of the ’reference- 
averaged Mayer (RAM) function’ theory [16]. The detailed description of the theory and 
significant technical aspects involved in its numerical implementation are given in section 2. 

As in [8 ] ,  we apply the theory to the analysis of orientational ordering at the liquid- 
vapour interface of water, focusing on the behaviour near room temperature which was 
inaccessible in our earlier work. Nonetheless, the results are qualitatively similar to 
those obtained in [8]. This is discussed in section 3. Here we describe a more detailed 
representation of the interfacial ordering than that given in [SI, in particular, based on 
three-dimensional plots of the orientational probability density as a function of its relevant 
Euler angles. This shows that there are significant variations in orientational shucture with 
distance through the interface. However, the most statistically significant structures are those 
occurring near the highdensity, bulk liquid edge of the interface, which are dominated by 
alignment of molecules with their dipole axes parallel and HOH planes perpendicular to the 
interfacial plane. This ordering is accompanied by a weak asymmetry in the distribution 
of dipole axes, resulting in a net inclination of molecular dipoles toward the bulk liquid 
phase. These results are consistent with those of recent computer simulations, principally 
the work of Wilson eta1 [ 151, although differences are found in the nature of ordering near 
the low-density, vapour edge of the interface. The comparison with simulation results also 
indicates that the present theory may quantitatively underestimate the degree of interfacial 
orientational ordering. Possible reasons for this discrepancy, as well as further discussion 
of our findings and conclusions, are contained in the final section 4, of the paper. 

2. Theory 

2.1. The free energy functional 

We recapitulate the basic mean-field equations for a classical inhomogeneous molecular 
fluid [2-111. The molecular degrees of freedom, i.e., position 9- and orientational Euler 
angles U,  will be collectively denoted by the symbol I. We assume the intermolecular pair 
potential V(q, 2 2 )  has the form 

(1) 

where Vlsf(rl2) is an isotropic reference potential depending only on the intermolecular 
distance r12 = 19-2 - 9-11. Our further development assumes that Vd(r12) contains all 
the short-range repulsive contributions to the pair potential, and no other contributions. 
All remaining pair interactions, including all anisotropic effects plus ‘long-range’ isotropic 
attractions, are contained in VPM(z~, 12). We separate the latter contributions by further 
writing 

(2) 

Now, in the absence of external fields, the mean-field approximation for the grand 

V(ZI. 12) = V d r d  + V ~ ( I I .  52) 

VperdII, Z Z )  = Va,c(m) + Vanh, 12). 

canonical variational potential is 

s2 = / d r  f&(9-)) + / da: i ~ ( z ) [ k T  In(8nzf(r)) - pel + A ~ M F  (3) 

(4) AQMF = 4 / dzi dzziJ(”i)Vp&i, XZ)P(W. 
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Here pc is the chemical potential, p(z)  is the one-particle probability density, p ( r )  = 
j d w p ( r )  is the angle-averaged number density, and f(z) p ( x ) / p ( r )  is the normalized 
orientational distribution function; Jdxi denotes Jdr i  J d q .  In (3). the contribution of 
the repulsive potential V d  to the grand potential has been treated in a local thermodynamic 
approximation, where f,&) is the Helmholtz freeenergy density of a uniform bulk fluid 
of number density p interacting via pair potential VEf(rlz). More refined treatments of 
the repulsive force contribution, based on 'weighted-density' techniques (see, e.g., [3]), are 
available but will not be considered in this work. 

Consider the decomposition of VPer t (q ,  xz) in (2). As discussed in [SI, in those cases 
where the unweighted angle averages of Vm(rl ,  $2) (over either or both of W I ,  w ~ )  vanish, 
this interaction makes no contribution to the equilibrium grand potential n, obtained by 
minimizing (3) with respect to p(x ) .  This deficiency led Teixeira and Telo da Gama [7] to 
replace APMF in (4) by the following generalized mean-field functional AQGMF: 

AQGMF = $ / d ~ i d z z p ( ~ i ) p ( ~ a )  V p , ( ~ i , ~ z )  - ~V&("I ,%)]  B [ (5) 

where p = l / k T .  In their original derivation, this formula was obtained from an expression 
containing [I - exp(-j3Vppn)] in the integral. The theory described by the present authors 
in [8], derived by a quite different route, yielded a generalized functional similar to that of 
(5 )  but containing additional terms of  quadratic order in V,,(zl, 22). One effect of these 
additional terms was that the isotropic attraction Vatt(rlz) cancelled out from all quadratic 
terms and thus contributed only to linear, 'mean-field', order. However, the quantitative 
effect of the additional terms (after removing V,,(rt~)) appears to be minimal, so that for 
practical purposes the theory of [SI is equivalent to using AQGMF as given by (S), with 
V&(xl, 1 2 )  replaced by V,',Cxi, 22). 

The present proposed revision of the theory can be motivated by rewriting the original 
mean-field expression (4) using the factorization p(z)  = p ( r ) f ( z ) :  

AQMF = 4 d r i  drzp(ri)V,,(ri,rz)p(rz) (6) s 
where 

V p e r t ( ~ t , ~ z )  = dwtdwz f(z~)Vpert(x~, z~)f(zz). (7) s 
In this form, the contribution of all anisotropic forces to the grand potential is equivalent 
to that of a fluid interacting by an effective orientation-independent potential ?p,n(ri, TZ). 
This picture of replacing the actual anisotropic fluid by an angle-independent reference fluid 
underlies most perturbation theories of bulk isotropic phases in such fluids 117,181, where 
f(z) is constant. For an inhomogeneous fluid, f(z) is generally constant with respect to 
neither position nor orientation, and the effective potential defined by (7) is functionally 
dependent (via f(z)) on the spatial inhomogeneity and orientational order [19]. From 
this viewpoint, the expression (7) is equivalent to the most rudimentary form of molecular 
perturbation theory, based on direct linear averaging of the anisotropic potential. Several 
other fairly simple prescriptions for obtaining the effective angleaveraged potential have 
been developed [ 181, but here we consider only the best known of these, based on averaging 
the Boltzmann factor of the potential 1191: 

e-Bvm(T1,12) = dw, d o 2  f ( s~ ) f ( r~ )e -Bv~(2 ' . " ' ) .  (8) 
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For a uniform isotropic fluid, this reduces to the prescription of RAM perturbation theory 
[16-19]. On substituting (2), the isotropic component Vm(rlz) is unaffected by the angle 
averaging, and hence 

v p e & i , ~ z )  = van(rtz) t V&I. 7-2) (9) 

where 

e -@k(nm)  = do2 f(i,)f(iZ)e-Bv~(Zi-22), (10) s 
Solving the latter by expansion in powers of 0 gives 

+ E [  / d o l  d o z f ( w ) f ( z z ) v & m .  Q) + W2). 
2 T (1 1) 

This is similar to the approximation used in [SI (see equations (7) and (8) in [8]) but differs 
slightly in the terms corresponding to the second line of (11). In this paper, we will retain 
the unexpanded expression in (IO). 

We introduce one further modification, namely to generalize (6) by including the 
correlation function g,t(Tl, T?) of the reference repulsive fluid: 

AQMF = dTl dT2g&lI T ~ P ( T I ) P ( T ~ V ~ ( T ~ .  TZ) .  (12) 
2 s  

This inclusion of gre f (q ,  T Z )  can be expected on general grounds [7, IO]. While ultimately 
it would be desirable to consider an approximation for T?) embodying features of a 
high-density, inhomogeneous fluid, here we limit ourselves to the low-density approximation 
171 

(13) 

Since V,r(rIz) is taken to be an isotropic repulsive potential, effectively the function g,f 
does no more than provide a smooth cut-off to vPw(rl, rz) in (12) at distance rl2 within 
the repulsive core. The ambiguity in otherwise treating the small-rlz limit of ?,,u~(TI, r2) 

is OUT main motivation for the introduction of gef ( r l ,  T Z ) .  

In summary, OUT approximate free-energy functional C2 is given by equations (3). (9), 
(IO), (12), and (13). The equilibrium grand canonical potential QerC is the minimum of Q 
on variation with respect to the probability density p(z). The condition 8Q/6p(z)  = 0 can 
be separated into two coupled relations [2]  

-B Vdw), g d T 1 ,  T Z )  = e 

6 Q  -- - 0 (fixed f(z)) 
JP(T) 
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where h(r)  in (15) is aLagrange multiplier introduced to satisfy the normalization condition 
Jdwf(z) = 1. These conditions yield the following coupled equations for the equilibrium 
orientational distribution function and number density: 

where 

In the last equation, pref = afer/i3p is the chemical potential of the repulsive reference 
fluid. 

For a bulk disordered fluid, the approximate free energy derived here agrees with a 
combined m-mean-field theory applied by Woodward and Nordbolm to the dipolar hard- 
sphere model 1201. Later work by these authors [21] extended their theory to non-uniform 
fluids by means of a ‘constrained RAM’ (CRAM) theory, which, however, is not equivalent 
to the present theory but includes orientational correlations in  a more complicated manner 
(essentially equivalent to the Bethe or two-particle cluster approximation of lattice systems). 
Another treatment, similar to ours, but restricted to dipolar fluids and therefore not applicable 
to water, has recently been described by Frodl and Diehich [IO, 111; it is equivalent to the 
original, unexpanded form of the theory developed by Teixeira and Telo da Gama 171. The 
work in [ 1 I ]  contains a detailed comparison of different theoretical treatments for bulk and 
interfacial properties of the Stockmayer model of dipolar fluids. 

In this paper we apply the theory to the TIWP 1141 model of water. In this case, the total 
pair potential V ( q ,  2 2 )  is a sum of sitesite interactions, consisting of a single Lennard- 
Jones term VU(rL1) acting between the water oxygen nuclei plus Coulomb interactions 
between all intermolecular pairs of charges. It is the latter electrostatic interaction which 
constitutes the anisotropic potential V m ( s l ,  22) .  In [SI, this was approximated by its 
leading-order dipolar and quadrupolar terms, while in this work we use a higher-order 
multipole expansion of Vm(s,, z2) (see below). The Lennard-Jones potential VU(rl2) is 
separated into repulsive (Vrrf) and attractive (Van) components using the Weeks-Chandler- 
Andersen WCA) prescription [ZZ]. Following WCA, the thermodynamic functions of the 
reference repulsive fluid are approximated by those of a hard-sphere fluid with density- 
and temperature-dependent diameter d = d ( p ,  T). The CarnahanStarling approximation 
is used for the reference free-energy density fmr(p). 

2.2. The expansion of the angularfitnctions 

The coupled equations (16)+8) are solved for a planar liquid-vapour interface using a 
conventional iterative technique [SI. The z-axis is taken to be normal to the interface, with 
positive direction pointing from liquid to vapour. Then P ( T )  = p ( z )  and f(s) = f ( z ,  w). 
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Due to azimuthal symmetry in directions parallel to the interface, the o-dependence of 
f(z,  o) only involves the polar angle B and dihedral angle x ,  defined in figure 1 of IS]. 

The expressions that involve angular variables are generally very complicated. To 
facilitate the computation, we expand all functions of orientations in terms of generalized 
spherical harmonics Dh,(w) [17]: 

X D:,", ( 0 1 ) * D ~ l n 2 ( W Z ) * 6 m ( 0 1 2 ) *  (21) 

where 012 denotes the orientation of the intermolecular vector T I T  r z  - P I ,  

C(Zl, l2.1; m l ,  m2. m) is a Clebsch-Gordan coefficient, and G,(oIz) is a spherical harmonic. 
The coefficients F(ll, 1 2 , l ,  nl ,  nz; r12) can be evaluated by using the orthogonality properties 
of D:,&,(w), Gm(oI2), and C(I1, 12, I ;  ml, m2, m )  (see subsection 2.3 for details). 

It follows from the the above definitions and (10) and (17) that 

1in; 
I' 

x C(ll, I;. 1'; 0,0 ,0)~ '~(0 l2)*  . (22) I-] 
So far, there are no mathematical approximations. In practice, the iterative solution of these 
equations is extremely time consuming, mainly due to the fact that the iteration variables 
fr.(z) are involved in the integral l dr12 [. . .I in (22). Therefore approximations must be 
made such that fi.(z) can be factored out of the inlegral j d r l 2  [. . .]. Assuming that the 
liquid-vapour interfacial orientational ordering is weak, namely that fr.(z) ( I  # 0) is small 
compared to fm, one can expand the integrand of (22) to first order in fr./fOo. After the 
expansion, we have 
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where 

and PI denotes a Legendre polynomial. Now given the functions G(I1, 12, I ,  n l ,  nz; r n ) ,  the 
integrals over rlz above can be computed once and for all for each temperature. The same 
type of expansion is used for evaluating Vm(rI, TZ) in (18). 

Another approximation has to be made for the computation to be feasible in practice, 
since the sums contain an infinite number of terms. Numerically, it is neither necessary 
nor feasible to keep all of them. In this paper, we choose to use maximum I = 5 for all 
spherical harmonic indices. We mention that a spherical harmonic expansion of the TIP4P 
electrostatic potential Vm(sl ,  rz) (which is a pure multipolar expansion) with 1- = 5 
yielded a very accurate representation of this interaction energy. Also, from our results we 
find fs,(z) to be much smaller than the leading order parameters, hence the choice I,, = 5 
is appropriate and accurate for all practical purposes. 

The solution of these equations proceeds by iteration between equation (16) and 
equations (20) and (23), i.e., using the result of the latter pair of equations (with some 
input functions fi .(z)  and p(z)) to evaluate f (z, o) from equation (16). A new set of 
functions fi#(z) is then generated from the inverse of equation (19) 

The density profile p(z) is  recomputed by adjusting p(z) in prer(p(z)) in (18) such that the 
condition pc = pC.bUk remains valid for all z, 

2.3. The calculation ofthe rotational invariants F ( I l , l z ,  I ,  nl ,  nz;  112)  

The main stumbling block for the computation is the calculation of the expansion coefficients 
F ( l j ,  12, I ,  n l ,  nz;  112) of e-pVa=, The binary expansion and extrapolation method given by 
Fries and Patey [23] works well at large molecular separation but fails significantly at short 
separations, where it matters most for the interfacial problem since the water liquid-vapour 
interfacial thickness is only about two molecular diameters. We have instead resorted to 
a direct integral evaluation of these coefficients, which involves five-dimensional angular 
integration. The symmeuy properties of h e  interaction Vm(xI, 2%) must be fully exploited 
to make such a calculation feasible. 

We choose an axial frame in which molecule 1 is fixed in orientation, i.e., ol = 0. 
Then Di,,n,(ol) =a,,.,, and F ( I 1 ,  12. I ,  n1, nz; q z )  is obtained from the relation 
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where 1 = It + 12 and A,,!, and the spherical multipole moments Qb are defined in 
equations (2.169) and (2.74) in [17], respectively. We have used the latter formula to 
calculate the required Ql. from the TIP4P point charge distribution for the water molecule. 

To optimize the fivedimensional integral in (D),  we regroup the factors in (26) in order 
to minimize the number of different angular functions involved in the summations. We also 
use the fact that only even-n moments Ql, are non-zero for the Czv symmetry of water, 
with Qc = e,., where fi = -n. Then (26) can be written as 

where 

and 

We use the following order of integration in (D),  from innermost to outermost: 
411,812, xz3 &, 82. Thus in the innermost integration loop (over &z), most of the angular 
functions (e.g., SI,,,) in V&I, x2) do not need to be evaluated repeatedly. It is also very 
important to factorize all spherical harmonics Em(w12) and Dk2n2(wz) into products of 
separate angular functions, leaving only the absolutely minimal computation present in the 
innermost loop. 

The angular integrations in (25) were done using Gaussian quadrature in all five 
dimensions; 20-point Gaussian quadrature yielded results with less than 1% error 
compared to 30 or more points. With these prescriptions, the computation time for 
F(I1,12,1. nl, nz; q 2 )  at a single rI2 value was cut down from almost a month to less 
than 1 min on a Silicon Graphics 4D35. 

3. Results 

As remarked earlier, all interaction parameters are computed for the TIP4P site-site potential 
model. In c o n m t  with our earlier work [8], which replaced the soft U core of the nP4P 
model by a hard-sphere core with fixed diameter fnated as an adjustable parameter, there 
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are no adjustable parameters in the present calculations. We first show in figure 1 the 
bulk liquid-vapour coexistence curve predicted by the theory, in comparison with both the 
experimental curve for water [24] and available computer simulation results for the TP4P 
model [E]. The theoretical critical temperature Z and density pc are found to be 609 K 
and 0.277 g 
respectively. Overall, the theory agrees reasonably well with experiment and simulation, the 
major discrepancy being in the shape of the liquidus curve at high temperatures. As well, 
below room temperature, the predicted liquid densities overshoot the experimental values: 
at T = 300 K, the theory predicts the liquid density to be 1.047 g cm-3, compared with 
0.997 g cm-3 from experiment. 

to be compared with experimental values of 647 K and 0.322 g 

700 

600 

500 
h 

v 
bs 

100 

300 

200 

Coexistence curve 
L ' !  ' " " " " ' " " " " " ~ ' ~ ' ~ ' ~  

Figure 1. The bulk liquid-vapour coexistence c w e  far water, comparing present theory with 
experiment [XI. The points are computer simulation results for the nPbP model 12.51 

We next show, in figure 2, the variation of liquid-vapour surface tension y with 
temperature. Three 'generations' of the theory are displayed, the highest curve being that 
obtained previously in [SI, which ceased to be valid below 430 K. The next lower curve 
shows y obtained from the present theory, but using a hard-sphere repulsive core with fixed 
diameter U = 2.95 A, the value used in [SI. The third curve contains the results of the 
present theory using the soli U core of the TIP4P model. Softening the core is seen to produce 
a significant lowering of the surface tension. The lowest curve shows the experimental data 
[26]. Although our present results for y are still considerably higher than experiment, 
they compare more reasonably with the result of MD simulation [E], indicated on the 
graph, which is only available at the single temperature T = 325 K. At this temperature, 
y(theory) = 170 dyn cm-', y ( m )  = 149 f 18 dyn cm-I, y(expt) = 68 dyn cm-'. 

Calculated density profiles (oxygen-centred) at several temperatures are shown in 
figure 3. At the lowest temperature, T = 300 K, the '10-90' width of the profile has 
a value t = 5.75 A. This is comparable with but slightly larger than computer simulation 
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Figure 2. The variation of liquid-vapour surface tension y with tempemrum. The three curves 
labelled ( I ) ,  (2). (3) correspond. respectively, to the theory of [SI, the present theory using a 
fixed-diameter hard core, and the present theory with the soft repulsive core of the nwP model. 
The single point with its associated emor bar is the moleculx-dynamics result from 115l. 

results t = 5.148 from [27] and t = 4.70 A from [28]. We shall refer back to this figure 
in discussing next the variation of orientational ordering through the interface. Note that 
here and in the following figures, distance z is scaled by the Lennard-Jones diameter of the 
TlWP model, U = 3.15 A. 

Plots of the full angular distribution function f ( z ,  0 ,  x) against B and x for several 
values of z, at T = 325 K, are given in figure 4. Figures 4(a) and @) show the distribution 
function at ,?/U = -1 and -0.5, respectively, both lying on the high-density side of the 
interface (see figure 3). In both of these cases, the distribution function is strongly peaked 
at polar angle B = 90°, corresponding to a preferred alignment of dipole axes parallel 
to the interface. A weak asymmetty in the distribution on reflection about 0 = 90' is 
present, such that angles B > 90" are  slightly favoured, which is responsible for a weak 
net polarization of the interface (discussed further below and in @I). There is a weak 
variation of f ( z ,  8 ,  x )  with the dihedral angle x. At z/u = -1, this has maxima at 
x = 0" and 180" (both equivalent by symmetry), corresponding to preferred orientation of 
the HOH plane perpendicular to the interface. At z/u = -0.5, this has changed to produce 
a weak maximum at x = go", corresponding to predominant alignment of the HOH plane 
parallel to the interface, but the weakness of this tendency must be emphasized, As seen 
in figure 4(c), the distribution has changed considerably near the median of the interface 
at z/u = 0. Now three maxima are present, two of which (equivalent by symmetry) 
occur at B N 52", x = 0" and 180". Since the HOH bond angle of the TIP4P model is 
104.52", these maxima can be clearly ascribed to molecular orientations with one OH bond 
pointing vertically toward the vapour phase. The other maximum in figure 4(c) occurs at 
B N 116", x = 90", consistent with a uniform tilt of the HOH plane toward the liquid 
phase. Bimodel distributions consistent with that of figure 4(c) have been indicated, albeit 
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Figure 3. Profile of Ihe number density (oxygensentred) at several temperatures. The density 
p is given in unis of C3. where a = 3.15 A is the Leonard-Jones dimetex of the m 4 p  model. 

less definitively, by MD simulations [15,27]. Finally, figure 4(d) shows that f ( z . 0 .  x)  
undergoes a further dramatic change at z/o = 0.5, approaching the vapour side of the 
interface. Now the maxima in the polar-angle distribution occur at 0 = 0' and 180". the 
latter dominating slightly, which indicates a preferred perpendicular alignment of molecular 
dipoles with a weak bias in favour of dipoles pointing toward the bulk liquid. 

The preceding results show that there is a variation of dipole orientation across the 
interface, from predominantly parallel near the liquid side to perpendicular on the vapour 
side. This can also be seen &om the behaviour of the reduced distribution function of the 
polar axes 

zlr 

p w ( z . @ ) = 2 n l  d x f ( z + @ , x )  (28) 

which is plotted against z and 0 in figure 5, at T = 325 K. For z < 0, P,(z,O) has a 
maximum at O = go", while at z > 0, there are maxima at 0 = 0" and 0 = 180", the latter 
slightly more pronounced. These results concerning the dipole orientations agree with our 
previous work [SI and with related density-functional theories [7, 10,111 for pure dipolar 
fluids, although with the exception of [28], MD simulations of the water liquid-vapour 
interface indicate that parallel alignment of dipoles remains dominant at all positions in the 
interface [15,27,29]. 

The polarization of the interface, resulting from the weak asymmetry in the orientational 
distribution function on reflection about 0 = 90". is shown by the order parameter 

= P COS^), where ( ) denotes angle averaging weighted by f ( z , ~ ) .  The profile of 
this order parameter through the interface exhibits a single negative peak similar to that 
found in [8], which we omit displaying here. For comparison with the MD simulations of 
Wilson et d [ 151 on the TIP4P model, we have evaluated a related quantity, namely the 
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(a) z/u = -1 

(b) Z/CJ = -0.5 

Figure 4. The full angular distribution function f ( z ,  8, x) against 8 and x for several values 
of z,  at T = 325 K. 

average z-component of the dipole moment in a thin layer parallel to the interface. This is 
defined by 
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(c) z/ff = 0 

4835 

(d) Z/U = 0.5 

Figure 4. (continued) 

where p is the magnitude of the molecular dipole moment, A is the area of the interface, 
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Figure 5. Probability distnbution function P,,(r.8) of dipole orienution against I and 8 at 
T=325K. 

and Az is the thickness of the layer which is centred at position z .  The number density 
is included in the integrand to count the total molecular population of the layer. We 
have evaluated (29) from the present theory at intervals of width Az = 15 A, for area 
A = (21.71 A)*, consistent with values used in [lS]. The results are shown in figure 6 
along with those from [IS], where the lines joining the discrete points are merely to guide 
the eye. For the the sake of comparison, the two sets of data for & f p  arc plotted on 
different vertical scales. We see that there is very good apeement in the shape of the 
function /Iz against z, but the actual values of the dipole moment differ by one order of 
magnitude. This indicates that the theory may considerably underestimate the degree of 
orientational ordering in lhe interface, to be discussed further in section 4. 

The multimodal angular distribution shown by the preceding results begs the question, 
'what is the overall preferred orientation of water molecules in the interface?'. This can be 
answered by counting the numbers of molecules which occur in given orientations over the 
whole width of the interface. To this end, we divide the full angular intervals for 6' and x 
into segments of width A6 and A x ,  whose midpoints are denoted 6, and xm. and evaluate 
the quantity 

AN(6',,xm) =2rr/  s i n e d e /  d X [ ~ d z p ( z ) ( f ( i , 8 , x ) -  1/8rr2). (30) 

This is interpreted as the total number of molecules per unit area with orientations in the 
range A0 and AX about 6, and xm, in excess of that obtained from a random distribution 
of molecular orientations for which f ( z ,  w )  = 1/8x2, The subtraction of the latter isotropic 
distribution, leading to the interpretation of AN(&,, x,) as a surface excess quantity, allows 

8,"+A8/2 X d A x l 2  

e,-oe/z Xw-AxlZ 
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Figure 6. Normalized avenge net dipole moment in thin interfacial layers. & / p ,  U defined 
in (29). The solid circles (Of and squares (.) are the resuIts of the present theory and the 
molecular-dynamics simulations 11 SI. respectively. 

Figure 7. Surface excess angular distribution A N ( @ .  x )  as defined in (30). at T = 325 K. The 
units of A N  are 0-l .  
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the z-integration in (30) to be without limits and thus eliminates questions about defining 
the 'width' of the interfacial zone. For the same reason as in (29), the integration over 
z is weighted by the number density p(z).  For the choice A0 = A x  = 15", the results 
for AN(@,,,, xm) are given on a three-dimensional plot in figure I, where the continuous 
lines connect the values at the discrete points (e,,,, xm). Not surprisingly, this very clearly 
shows that the predominant orientation is 0 = 90". x = 0'(180°), corresponding to the 
most probable orientation on the liquid side of the interface seen earlier in figure 4(a). 

The last quantity we shall examine is the probability distribution of OH bond orientations 
at the interface. The reduced distribution function POH(L. @OH) of the angle 8OH between 
a molecular OH bond and the positive z-axis is obtained from the full angular distribution 
f(z, w) in the manner described in [SI. Figure 8 shows POH(Z. BOH) at T = 325 K, revealing 
a multimodal structure somewhat similar to that of P,(z. e) .  In particular, sharp peaks occur 
at 8oH = 0" and 180" on the vapour side of the interface. On the liquid side, weak maxima 
occur at eoH = 180" and OoH cz 60", while the middle region of the intcrface (z CY 0) shows 
maxima at @OH = 0" and on a shoulder at 8oH i 180" of the vapour peak at @OH = 180". 
The positions of these peaks, especially those on the more significant high-density side of 
the interface, have no obvious relation to those in the full probability distribution shown in 
figure 4. The maximum in f (z ,  o) at 0 = 90". x = O"(180") would be expected, naively, 
to produce POH(Z, OOH) maxima at BOH 5 90" k 52", whereas the latter are not found. This 
is related to the weak X-dependence of f ( z ,  w )  on the liquid side, which leads to a broad 
and flat OH bond distribution function. Test calculations on several hypothetical probability 
distributions show that sharp peaks in POH(z, 8) are found only for angular configurations 
which align either the dipolar axis or an OH bond parallel or antiparallel to the z-axis, 
structures which are predominant only on the vapour side of the interface. 

Figure 8.  
T=325K. 

OH-bond orientation distribution fundon P O H ( Z . B O H )  against z and BOH a1 
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The net excess density of OH bond orientations integrated over the interface is defined 
similarly to (30) 

% d A e P  m 

ANoH(@oH) = 1 a C m - ~ a i 2  sin8d@S__dzp(z)[Po~(z,@) - $1. (31) 

This is shown in figure 9 for T = 325 K, indicating that the predominant alignment of OH 
bonds (after subtracting the random bias) is at @OH N 140", i.e., tilted toward the liquid 
phase. The figure also reveals that OH bonds with 80, < 90°, i.e., projecting toward 
the vapour phase, occur with less probability than for a random distribution of molecular 
orientations. If the surface density of 'free' OH bonds is defined as the total surface density 
of OH bonds with @OH < 90", then we conclude that less than 50% of the interfacial 
molecules exhibit free OH bonds. This is consistent with a lower bound of 20% free OH 
bonds estimated from sum-frequency generation in [30]. A more precise theoretical value 
for the surface fraction of free OH bonds is difficult to obtain, since this is sensitive to the 
definition of interfacial width. 

0 000 =:~I~ ~ = o . o o o  

-0002 

-0004 
0 50 IM) 150 200 

B 
Figure 9. The net excess sutface densiiy of OH-bond orientations as defined tn (31h at 
T = 325 K. The units of ANon are a-'. 

4. Conclusion 

The present work improves upon our earlier theory [SI for the water liquid-vapour interface, 
enabling us to investigate behaviour near room temperature. The major changes in the 
theory are the use of the RAM prescription for the effective angle-averaged pair interaction, 
the consistent treatment of the soft Lennard-Jones core of the TIP4P model pair potential, 
and use of a high-order multipole expansion of the TIP~P site-site Coulomb potential. These 
changes, especially the first, require a significantly more complicated numerical analysis of 
the theory, which we have outlined in section 2. The present theory yields valid results in 
the entire physical temperature range of liquid water without adjustable parameters. 

The predicted dominant surface alignment of water molecules with dipole axes parallel to 
the surface, accompanied by a weak net polarization pointing from vapour to liquid, agrees 



with computer simulation results [ 15,27,29]. We have also found multimodal angular 
distributions near the median of the interface similar to ones observed in [15,27], although 
these are of less statistical weight due to the reduced number density in this region. On 
the high-density side of the interface, we find a weak preference for orientation of the 
molecular HOH plane perpendicular to the interface rather than parallel. This is apparently 
contrary to simulation results [15,27], but we do not place too much significance on this 
finding, due to the actual weakness of the variation in dihedral-angle probability. We note 
that, in the case of [U], the preferred orientations in the interface were deduced primarily 
from the behaviour of the OH bond distribution function POH(Z, @OH). At the liquid-vapour 
interface, however, we have indicated that the interpretation of maxima in POH(Z,@OH) is 
highly ambiguous. 

The pronounced tendency for perpendicular alignment of dipoles found in section 3 on 
the vapour side of the interface is also in disagreement with simulation results, although the 
large statistical uncertainties in simulation data in this region should not be overlooked [28]. 
The change in preferred dipole orientation from planar to perpendicular on passing from 
the liquid to the vapour side of the interface can be explained by a simple model of point 
multipoles in a dielectric continuum with a stcpfunction dielectric profile [ I  1,311. While 
this model is highly idealized, it is physically compelling and gives results in qualitative 
agreement with the present calculations, where the approximations of the model are absent. 

The major discrepancy with computer simulation findings is in the predicted degree of 
orientational ordering at the interface. This is most clearly shown by the comparison of 
theory and simulation [I51 for the layer dipole moments in figure 6. A weaker indication 
that the theory underestimates the degree of orientation ordering is the fact that the predicted 
value for surface tension at 325 K exceeds the simulation result, see figure 2, since increased 
surface ordering is generally expected to lower the surface tension, although this effect 
may be masked by those due to other factors such as the difference in bulk densities 
and the width of the interface [7,11]. This deficiency of the theory is plausibly linked 
to the two major approximations involved, namely use of the RAM formula (8) to obtain 
the effective angleaveraged potential V - ( T ~ ,  ~ 2 )  and replacement of the reference pair 
correlation function g,ef(T,,?-z) by its low-density limit (13). Therefore further study to 
refine these distinct approximations is desirable, for example by approaches described in 
[21] and [32], respectively. 

Even with such refinements of the density-functional theory, it would still be essentially 
of mean-field character and thus would neglect one other important effect, namely the 
occurrence of long-wavelength capillary-wave fluctuations, which lead to roughening of the 
interface [33,34]. The importance of this effect with respect to the density profile of the 
water liquid-vapour interface has been demonstrated by x-ray reflectivity studies, which 
indicate that the measured reflectivity can be accurately represented by considering only 
capillary-wave fluctuations [35]. Concerning orientational ordering at interfaces, capillary- 
wave fluctuations should produce a broadening of the order parameter profiles similar to 
that of the density profile. This follows from the conventional picture [33,34] that all 
short-wavelength fluctuations yield 'intrinsic' profiles which are functions of the distance 
z - &, y )  from a dividing surface of variable height c ( x ,  y ) ,  the true profiles being then 
obtained by averaging over the latter height fluctuations [36]. While the consequences of 
these fluctuations for comparing theory with experimental results on orientational structure 
have not (to our knowledge) been addressed, we do not believe this is a serious issue 
in making comparisons with available computer simulation results. since capillary-wave 
fluctuations are strongly suppressed by the finite system sizes used in these simulations. 
From the formula for the mean-square height fluctuation (c2 (x ,  y ) )  of an interface with 
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linear dimension L, and assuming a microscopic distance cut-off equal to the molecular 
diameter U [33,34], we estimate that the capillary-wave contribution to the interfacial width 
only becomes comparable to the 'intrinsic' width t N 5 .&(see section 3) when L 2 200 A. 
This is between six and ten times larger than dimensions used in recent simulations of the 
water surface [15,27,28], requiring of the order of 3 x lo5 molecules, sizes which may 
soon be attainable with modern computer technology. 
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